enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of gravity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_gravity

    Formally, c is a conversion factor for changing the unit of time to the unit of space. [4] This makes it the only speed which does not depend either on the motion of an observer or a source of light and / or gravity. Thus, the speed of "light" is also the speed of gravitational waves, and further the speed of any massless particle.

  3. Artificial gravity - Wikipedia

    en.wikipedia.org/wiki/Artificial_gravity

    Vast Space is a private company that proposes to build the world's first artificial gravity space station using the rotating spacecraft concept. [23] A Mars gravity simulator could be built on the Moon to prepare for Mars missions. The surface gravity of Mars is somewhat more than twice that of the Moon.

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Based on wind resistance, for example, the terminal velocity of a skydiver in a belly-to-earth (i.e., face down) free-fall position is about 195 km/h (122 mph or 54 m/s). [3] This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the ...

  5. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    Nevertheless, the Lorentz equations allow one to calculate proper time and movement in space for the simple case of a spaceship which is applied with a force per unit mass, relative to some reference object in uniform (i.e. constant velocity) motion, equal to g throughout the period of measurement.

  6. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    Assuming that gravity is the only significant force in the system, this object's speed at any point in the trajectory will be equal to the escape velocity at that point due to the conservation of energy, its total energy must always be 0, which implies that it always has escape velocity; see the derivation above.

  7. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  8. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    At the infinity (,) =, so =, or, in coordinates adjusted to the local time dilation, =; that is, time dilation due to acquired velocity (as measured at the falling body's position) equals to the gravitational time dilation in the well the body fell into. Applying this argument more generally one gets that (under the same assumptions on the ...

  9. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Before Newton's law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature.