Search results
Results from the WOW.Com Content Network
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
The goal is then to find for some instance x an optimal solution, that is, a feasible solution y with (,) = {(, ′): ′ ()}. For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0 .
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.
The choice among "Pareto optimal" solutions to determine the "favorite solution" is delegated to the decision maker. In other words, defining the problem as multi-objective optimization signals that some information is missing: desirable objectives are given but combinations of them are not rated relative to each other.
An isocost line is a curve which shows various combinations of inputs that cost the same total amount . For the two production inputs labour and capital, with fixed unit costs of the inputs, the isocost curve is a straight line . The isocost line is always used to determine the optimal production combined with the isoquant line .
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
In the design of experiments for estimating statistical models, optimal designs allow parameters to be estimated without bias and with minimum variance. A non-optimal design requires a greater number of experimental runs to estimate the parameters with the same precision as an optimal design. In practical terms, optimal experiments can reduce ...
2. The strong duality theorem provides a "good characterization" of the optimal value of an LP in that it allows us to easily prove that some value t is the optimum of some LP. The proof proceeds in two steps: [4]: 260–261 Show a feasible solution to the primal LP with value t; this proves that the optimum is at least t.