enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/GramSchmidt_process

    The first two steps of the GramSchmidt process. In mathematics, particularly linear algebra and numerical analysis, the GramSchmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.

  3. Independent component analysis - Wikipedia

    en.wikipedia.org/wiki/Independent_component_analysis

    For multiple source mixture signals, we can use kurtosis and Gram-Schmidt Orthogonalization (GSO) to recover the signals. Given M signal mixtures in an M-dimensional space, GSO project these data points onto an (M-1)-dimensional space by using the weight vector. We can guarantee the independence of the extracted signals with the use of GSO.

  4. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    This method has greater numerical stability than the GramSchmidt method above. The following table gives the number of operations in the k -th step of the QR-decomposition by the Householder transformation, assuming a square matrix with size n .

  5. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    Overall, the application of linear algebra in fluid mechanics, fluid dynamics, and thermal energy systems is an example of the profound interconnection between mathematics and engineering. It provides engineers with the necessary tools to model, analyze, and solve complex problems in these domains, leading to advancements in technology and ...

  6. Orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_polynomials

    In other words, the sequence is obtained from the sequence of monomials 1, x, x 2, … by the GramSchmidt process with respect to this inner product. Usually the sequence is required to be orthonormal , namely, P n , P n = 1 , {\displaystyle \langle P_{n},P_{n}\rangle =1,} however, other normalisations are sometimes used.

  7. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    A GramSchmidt process could orthogonalize the columns, but it is not the most reliable, nor the most efficient, nor the most invariant method. The polar decomposition factors a matrix into a pair, one of which is the unique closest orthogonal matrix to the given matrix, or one of the closest if the given matrix is singular.

  8. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  9. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Hilbert matrix — example of a matrix which is extremely ill-conditioned (and thus difficult to handle) Wilkinson matrix — example of a symmetric tridiagonal matrix with pairs of nearly, but not exactly, equal eigenvalues; Convergent matrix — square matrix whose successive powers approach the zero matrix; Algorithms for matrix multiplication: