enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    Conversely the period of the repeating decimal of a fraction ⁠ c / d ⁠ will be (at most) the smallest number n such that 10 n − 1 is divisible by d. For example, the fraction ⁠ 2 / 7 ⁠ has d = 7, and the smallest k that makes 10 k − 1 divisible by 7 is k = 6, because 999999 = 7 × 142857.

  3. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    For example, 0.24999... equals 0.25, exactly as in the special case considered. These numbers are exactly the decimal fractions, and they are dense. [41] [9] Second, a comparable theorem applies in each radix (base). For example, in base 2 (the binary numeral system) 0.111... equals 1, and in base 3 (the ternary numeral system) 0.222

  4. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    Examples of proper fractions are 2/3, −3/4, and 4/9, whereas examples of improper fractions are 9/4, −4/3, and 3/3. Reciprocals and the invisible denominator The reciprocal of a fraction is another fraction with the numerator and denominator exchanged.

  5. Number Forms - Wikipedia

    en.wikipedia.org/wiki/Number_Forms

    Vulgar Fraction One Seventh 2150 8528 ⅑ 1 ⁄ 9: 0.111... Vulgar Fraction One Ninth 2151 8529 ⅒ 1 ⁄ 10: 0.1 Vulgar Fraction One Tenth 2152 8530 ⅓ 1 ⁄ 3: 0.333... Vulgar Fraction One Third 2153 8531 ⅔ 2 ⁄ 3: 0.666... Vulgar Fraction Two Thirds 2154 8532 ⅕ 1 ⁄ 5: 0.2 Vulgar Fraction One Fifth 2155 8533 ⅖ 2 ⁄ 5: 0.4 Vulgar ...

  6. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    A cycle of length 3, for example, occurs if an iterate has a 3-bit repeating sequence in its binary expansion (which is not also a one-bit repeating sequence): 001, 010, 100, 110, 101, or 011. The iterate 001001001... maps into 010010010..., which maps into 100100100..., which in turn maps into the original 001001001...; so this is a 3-cycle of ...

  7. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  8. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

  9. Fractional part - Wikipedia

    en.wikipedia.org/wiki/Fractional_part

    By consequence, we may get, for example, three different values for the fractional part of just one x: let it be −1.3, its fractional part will be 0.7 according to the first definition, 0.3 according to the second definition, and −0.3 according to the third definition, whose result can also be obtained in a straightforward way by