enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun.

  3. Magnetosphere - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere

    Study of Earth's magnetosphere began in 1600, when William Gilbert discovered that the magnetic field on the surface of Earth resembled that of a terrella, a small, magnetized sphere. In the 1940s, Walter M. Elsasser proposed the model of dynamo theory, which attributes Earth's magnetic field to the motion of Earth's iron outer core.

  4. Neptune - Wikipedia

    en.wikipedia.org/wiki/Neptune

    The average distance between Neptune and the Sun is 4.5 billion km (about 30.1 astronomical units (AU), the mean distance from the Earth to the Sun), and it completes an orbit on average every 164.79 years, subject to a variability of around ±0.1 years. The perihelion distance is 29.81 AU, and the aphelion distance is 30.33 AU.

  5. Van Allen radiation belt - Wikipedia

    en.wikipedia.org/wiki/Van_Allen_radiation_belt

    Earth's two main belts extend from an altitude of about 640 to 58,000 km (400 to 36,040 mi) [3] above the surface, in which region radiation levels vary. The belts are in the inner region of Earth's magnetic field. They trap energetic electrons and protons. Other nuclei, such as alpha particles, are less prevalent.

  6. Magnetosphere chronology - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere_chronology

    1820 - Hans Christian Ørsted discovers electric currents create magnetic effects. André-Marie Ampère deduces that magnetism is basically the force between electric currents. 1833 - Carl Friedrich Gauss and Wilhelm Weber worked out the mathematical theory for separating the inner and outer magnetosphere sources of Earth's magnetic field.

  7. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    Magnetic field lines form in concentric circles around a cylindrical current-carrying conductor, such as a length of wire. The direction of such a magnetic field can be determined by using the "right-hand grip rule" (see figure at right). The strength of the magnetic field decreases with distance from the wire.

  8. Geomagnetic secular variation - Wikipedia

    en.wikipedia.org/wiki/Geomagnetic_secular_variation

    Geomagnetic secular variation refers to changes in the Earth's magnetic field on time scales of about a year or more. These changes mostly reflect changes in the Earth's interior, while more rapid changes mostly originate in the ionosphere or magnetosphere. [1] The geomagnetic field changes on time scales from milliseconds to millions of years.

  9. Dipole model of the Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Dipole_model_of_the_earth's...

    The dipole model of the Earth's magnetic field is a first order approximation of the rather complex true Earth's magnetic field. Due to effects of the interplanetary magnetic field (IMF), and the solar wind, the dipole model is particularly inaccurate at high L-shells (e.g., above L=3), but may be a good approximation for lower L-shells. For ...