Search results
Results from the WOW.Com Content Network
It is equivalent to the heat supplied to the evaporator/boiler part of the refrigeration cycle and may be called the "rate of refrigeration" or "refrigeration capacity". As the target temperature of the refrigerator approaches ambient temperature, without exceeding it, the refrigeration capacity increases thus increasing the refrigerator's COP.
Energy; system unit code (alternative) symbol or abbrev. notes sample default conversion combinations SI: yottajoule: YJ YJ 1.0 YJ (2.8 × 10 17 kWh) zettajoule: ZJ ZJ 1.0 ZJ (2.8 × 10 14 kWh)
It was originally defined as the rate of heat transfer that results in the freezing or melting of 1 short ton (2,000 lb; 907 kg) of pure ice at 0 °C (32 °F) in 24 hours. [1] [2] The modern definition is exactly 12,000 Btu IT /h (3.516853 kW). Air-conditioning and refrigeration equipment capacity in the U.S. is often specified in "tons" (of ...
The conversion procedure for some units (for example, the Mach unit of speed) are built into Module:Convert as they are too complex to be specified in a table. That is indicated by entering a code (which must be the same as used in the module) in the Extra column.
Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. [1] A heat pump is a mechanical system that transmits heat from one location (the "source") at a certain temperature to another location (the "sink" or "heat sink") at a higher temperature. [2]
The coefficient of performance or COP (sometimes CP or CoP) of a heat pump, refrigerator or air conditioning system is a ratio of useful heating or cooling provided to work (energy) required. [ 1 ] [ 2 ] Higher COPs equate to higher efficiency, lower energy (power) consumption and thus lower operating costs.
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera).
So, for a boiler that produces 210 kW (or 700,000 BTU/h) output for each 300 kW (or 1,000,000 BTU/h) heat-equivalent input, its thermal efficiency is 210/300 = 0.70, or 70%. This means that 30% of the energy is lost to the environment. An electric resistance heater has a thermal efficiency close to 100%. [8]