Search results
Results from the WOW.Com Content Network
Camber is a complex property that can be more fully characterized by an airfoil's camber line, the curve Z(x) that is halfway between the upper and lower surfaces, and thickness function T(x), which describes the thickness of the airfoils at any given point. The upper and lower surfaces can be defined as follows:
As shown in the figure to the above right, the three sets of symmetrical components (positive, negative, and zero sequence) add up to create the system of three unbalanced phases as pictured in the bottom of the diagram. The imbalance between phases arises because of the difference in magnitude and phase shift between the sets of vectors.
In fluid dynamics, angle of attack (AOA, α, or ) is the angle between a reference line on a body (often the chord line of an airfoil) and the vector representing the relative motion between the body and the fluid through which it is moving. [1] Angle of attack is the angle between the body's reference line and the oncoming flow.
File:Unbalanced symmetrical components.pdf. Add languages. ... and the necessary symmetrical components that will create the resulting three-phase system.
An airfoil with camber compared to a symmetrical airfoil The maximum lift force that can be generated by an airfoil at a given airspeed depends on the shape of the airfoil, especially the amount of camber (curvature such that the upper surface is more convex than the lower surface, as illustrated at right).
The mean camber line or mean line is the locus of points midway between the upper and lower surfaces. Its shape depends on the thickness distribution along the chord; The thickness of an airfoil varies along the chord. It may be measured in either of two ways: Thickness measured perpendicular to the camber line.
Lift on a sail (L), acting as an airfoil, occurs in a direction perpendicular to the incident airstream (the apparent wind velocity, V A, for the head sail) and is a result of pressure differences between the windward and leeward surfaces and depends on angle of attack, sail shape, air density, and speed of the apparent wind.
A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.