Search results
Results from the WOW.Com Content Network
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).
[2] Let x 1 and x 2 be the vector positions of the two bodies, and m 1 and m 2 be their masses. The goal is to determine the trajectories x 1 (t) and x 2 (t) for all times t, given the initial positions x 1 (t = 0) and x 2 (t = 0) and the initial velocities v 1 (t = 0) and v 2 (t = 0). When applied to the two masses, Newton's second law states that
If the body shown in the illustration is a homogeneous disc, this moment of inertia is = /. If the disc has the mass 0,5 kg and the radius 0,8 m, the moment of inertia is 0,16 kgm 2. If the amount of force is 2 N, and the lever arm 0,6 m, the amount of torque is 1,2 Nm.
In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [1]
The X comes divided by 4! = 4 × 3 × 2, but the number of ways to link up the X half lines to make the diagram is only 4 × 3, so the contribution of this diagram is divided by two. For another example, consider the diagram formed by joining all the half-lines of one X to all the half-lines of another X.
An object resting on a surface and the corresponding free body diagram showing the forces acting on the object. The normal force N is equal, opposite, and collinear to the gravitational force mg so the net force and moment is zero. Consequently, the object is in a state of static mechanical equilibrium.
In this case we want to draw about a 1/3 to 1/2 complete arc. Drag the two circular handles until you have something that resembles a smile. Finally the nose must be drawn. To do this select the Bézier arc and straight line tool (Shift + F6) from the left hand menu. Now roughly in where you want the nose click out a straight line horizontally ...
Figure 1: Parallelogram construction for adding vectors. This construction has the same result as moving F 2 so its tail coincides with the head of F 1, and taking the net force as the vector joining the tail of F 1 to the head of F 2. This procedure can be repeated to add F 3 to the resultant F 1 + F 2, and so forth.