Search results
Results from the WOW.Com Content Network
To separate shrinkage from creep, the compliance function (, ′), defined as the stress-produced strain (i.e., the total strain minus shrinkage) caused at time t by a unit sustained uniaxial stress = applied at age ′, is measured as the strain difference between the loaded and load-free specimens.
Concrete has a very low coefficient of thermal expansion, and as it matures concrete shrinks. All concrete structures will crack to some extent, due to shrinkage and tension. Concrete which is subjected to long-duration forces is prone to creep. The density of concrete varies, but is around 2,400 kilograms per cubic metre (150 lb/cu ft). [1]
It models concrete considering concrete stresses in principal directions summed with reinforcing stresses assumed to be only axial. The concrete stress-strain behaviour was derived originally from Vecchio's tests and has since been confirmed with about 250 experiments performed on two large special purpose testing machines at the University of ...
For example, moderate creep in concrete is sometimes welcomed because it relieves tensile stresses that might otherwise lead to cracking. Unlike brittle fracture, creep deformation does not occur suddenly upon the application of stress. Instead, strain accumulates as a result of long-term stress. Therefore, creep is a "time-dependent" deformation.
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...
Concrete is a brittle material and can only withstand small amount of tensile strain due to stress before cracking. When a reinforced concrete member is put in tension, after cracking, the member elongates by widening of cracks and by formation of new cracks. Figure 1 Formation of internal cracks
High performance FRC (HPFRC) claims it can sustain strain-hardening up to several percent strain, resulting in a material ductility of at least two orders of magnitude higher when compared to normal concrete or standard fiber-reinforced concrete. [27] HPFRC also claims a unique cracking behavior.
Preconsolidation pressure is the maximum effective vertical overburden stress that a particular soil sample has sustained in the past. [1] This quantity is important in geotechnical engineering, particularly for finding the expected settlement of foundations and embankments.