Search results
Results from the WOW.Com Content Network
After relating area to the number of triangles in this way, the proof concludes by using Euler's polyhedral formula to relate the number of triangles to the number of grid points in the polygon. [5] Tiling of the plane by copies of a triangle with three integer vertices and no other integer points, as used in the proof of Pick's theorem
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.
In computational geometry, polygon triangulation is the partition of a polygonal area (simple polygon) P into a set of triangles, [1] i.e., finding a set of triangles with pairwise non-intersecting interiors whose union is P. Triangulations may be viewed as special cases of planar straight-line graphs.
In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.
Circle packing in an equilateral triangle is a packing problem in discrete mathematics where the objective is to pack n unit circles into the smallest possible equilateral triangle. Optimal solutions are known for n < 13 and for any triangular number of circles, and conjectures are available for n < 28 .
Actuarial notation is a shorthand method to allow actuaries to record mathematical formulas that deal with interest rates and life tables. Traditional notation uses a halo system, where symbols are placed as superscript or subscript before or after the main letter. Example notation using the halo system can be seen below.
A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle.