Search results
Results from the WOW.Com Content Network
A 3D cell culture is an artificially created environment in which biological cells are permitted to grow or interact with their surroundings in all three dimensions. Unlike 2D environments (e.g. a Petri dish), a 3D cell culture allows cells in vitro to grow in all directions, similar to how they would in vivo. [1]
In vitro (meaning in glass, or in the glass) studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology and its subdisciplines are traditionally done in labware such as test tubes, flasks, Petri dishes , and microtiter ...
Cell-based models are mathematical models that represent biological cells as discrete entities. Within the field of computational biology they are often simply called agent-based models [1] of which they are a specific application and they are used for simulating the biomechanics of multicellular structures such as tissues. to study the influence of these behaviors on how tissues are organised ...
In any case, users of a model need to understand the assumptions made that are pertinent to its validity for a given use. Building a model requires abstraction. Assumptions are used in modelling in order to specify the domain of application of the model. For example, the special theory of relativity assumes an inertial frame of reference.
[20] [21] Microfluidic BBB in vitro models replicate a 3D environment for embedded cells (which provides precise control of cellular and extracellular environment), replicate shear stress, have more physiologically relevant morphology in comparison to 2D models, and provide easy incorporation of different cell types into the device. [22]
On the other hand, the strict meaning of "tissue culture" refers to the culturing of tissue pieces, i.e. explant culture. Tissue culture is an important tool for the study of the biology of cells from multicellular organisms. It provides an in vitro model of the tissue in a well defined environment which can be easily manipulated and analysed ...
They function similarly to other 3D bioprinting processes but are optimized for zero gravity settings. Limitations of microgravity bioprinting are shared amongst other 3D bioprinting techniques. [7] An added challenge is sending biomaterials and bioinks to space when the supply on board the ISS has been extinguished.
The company Organovo, which designed one of the initial commercial bioprinters in 2009, has displayed that biodegradable 3D tissue models can be used to research and develop new drugs, including those to treat cancer. [41] An additional impact of organ printing includes the ability to rapidly create tissue models, therefore increasing productivity.