Search results
Results from the WOW.Com Content Network
English: Example of a DFA that accepts binary numbers that are multiples of 3. Čeština: Příklad deterministického konečného automatu , který přijímá binární čísla, která jsou beze zbytku dělitelná třemi.
An example of a deterministic finite automaton that accepts only binary numbers that are multiples of 3. The state S 0 is both the start state and an accept state. For example, the string "1001" leads to the state sequence S 0, S 1, S 2, S 1, S 0, and is hence accepted.
An example of an accepting state appears in Fig. 5: a deterministic finite automaton (DFA) that detects whether the binary input string contains an even number of 0s. S 1 (which is also the start state) indicates the state at which an even number of 0s has been input. S 1 is therefore an accepting state. This acceptor will finish in an accept ...
A state S of the DFA is an accepting state if and only if at least one member of S is an accepting state of the NFA. [2] [3] In the simplest version of the powerset construction, the set of all states of the DFA is the powerset of Q, the set of all possible subsets of Q. However, many states of the resulting DFA may be useless as they may be ...
Generating an NFA by Thompson's construction, and using an appropriate algorithm to simulate it, it is possible to create pattern-matching software with performance that is , where m is the length of the regular expression and n is the length of the string being matched.
Simultaneous transitions in multiple finite-state machines can be shown in what is effectively an n-dimensional state-transition table in which pairs of rows map (sets of) current states to next states. [1] This is an alternative to representing communication between separate, interdependent finite-state machines.
The strings represented by the DAFSA are formed by the symbols on paths in the graph from the source vertex to any sink vertex (a vertex with no outgoing edges). In fact, a deterministic finite state automaton is acyclic if and only if it recognizes a finite set of strings. [1]
At each step of the simulation, the active set of NFA states forms a new DFA state. If the new state is identical to an existing DFA state, it is discarded and replaced with the existing one, and the current branch of simulation terminates. Otherwise the new state is added to the growing set of DFA states and simulation from this state continues.