enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.

  3. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    This formula holds whether or not the cylinder is a right cylinder. [7] This formula may be established by using Cavalieri's principle. A solid elliptic right cylinder with the semi-axes a and b for the base ellipse and height h. In more generality, by the same principle, the volume of any cylinder is the product of the area of a base and the ...

  4. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane.It is also a spherical segment of one base, i.e., bounded by a single plane.

  5. Right circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Right_circular_cylinder

    Illustration of a cylinder and the planification of its lateral surface. The lateral surface of a right cylinder is the meeting of the generatrices. [3] It can be obtained by the product between the length of the circumference of the base and the height of the cylinder. Therefore, the lateral surface area is given by: =. [2]

  6. Steinmetz solid - Wikipedia

    en.wikipedia.org/wiki/Steinmetz_solid

    The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...

  7. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    When calculating the length of a short north-south line at the equator, the circle that best approximates that line has a radius of (which equals the meridian's semi-latus rectum), or 6335.439 km, while the spheroid at the poles is best approximated by a sphere of radius , or 6399.594 km, a 1% difference. So long as a spherical Earth is assumed ...

  8. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    This equation reduces to that of the volume of a sphere when all three elliptic radii are equal, and to that of an oblate or prolate spheroid when two of them are equal. The volume of an ellipsoid is ⁠ 2 / 3 ⁠ the volume of a circumscribed elliptic cylinder, and ⁠ π / 6 ⁠ the volume of the circumscribed box.

  9. Toroid - Wikipedia

    en.wikipedia.org/wiki/Toroid

    The volume (V) and surface area (S) of a toroid are given by the following equations, where r is the radius of the circular section, and R is the radius of the overall shape. V = 2 π 2 r 2 R {\displaystyle V=2\pi ^{2}r^{2}R}