Search results
Results from the WOW.Com Content Network
If the concentration of a reactant remains constant (because it is a catalyst, or because it is in great excess with respect to the other reactants), its concentration can be included in the rate constant, leading to a pseudo–first-order (or occasionally pseudo–second-order) rate equation.
Although these equations were derived to assist with predicting the time course of drug action, [1] the same equation can be used for any substance or quantity that is being produced at a measurable rate and degraded with first-order kinetics. Because the equation applies in many instances of mass balance, it has very broad applicability in ...
[A] can provide intuitive insight about the order of each of the reagents. If plots of v / [A] vs. [B] overlay for multiple experiments with different-excess, the data are consistent with a first-order dependence on [A]. The same could be said for a plot of v / [B] vs. [A]; overlay is consistent with a first-order dependence on [B].
In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on. [7]
Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with Δ G ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...
In this one-compartment model, the most common model of elimination is first order kinetics, where the elimination of the drug is directly proportional to the drug's concentration in the organism. This is often called linear pharmacokinetics , as the change in concentration over time can be expressed as a linear differential equation d C d t ...
In fact, however, the observed reaction rate is second-order in NO 2 and zero-order in CO, [5] with rate equation r = k[NO 2] 2. This suggests that the rate is determined by a step in which two NO 2 molecules react, with the CO molecule entering at another, faster, step. A possible mechanism in two elementary steps that explains the rate ...
Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics , which deals with the direction in which a reaction occurs but in itself tells nothing about its rate.