enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Metal–air electrochemical cell - Wikipedia

    en.wikipedia.org/wiki/Metal–air_electrochemical...

    When electricity must be stored, hydrogen generated from water by operating the fuel cell in reverse is consumed during the reduction of the iron oxide to metallic iron. [20] [21] The combination of both of these cycles is what makes the system operate as an iron–air rechargeable battery. Limitations of this technology come from the materials ...

  3. Iron redox flow battery - Wikipedia

    en.wikipedia.org/wiki/Iron_redox_flow_battery

    The group set the groundwork for further development. In 1979, Thaller et. al. introduced an iron-hydrogen fuel cell as a rebalancing cell for the chromium-iron redox flow battery [19] which was adapted 1983 for the iron-redox flow batteries by Stalnake et al. [20] Further development went into the fuel cell as a separate system. [11] [12] [21]

  4. Nickel–iron battery - Wikipedia

    en.wikipedia.org/wiki/Nickel–iron_battery

    Thomas Edison in 1910 with a nickel-iron cell from his own production line. The nickel–iron battery (NiFe battery) is a rechargeable battery having nickel(III) oxide-hydroxide positive plates and iron negative plates, with an electrolyte of potassium hydroxide. The active materials are held in nickel-plated steel tubes or perforated pockets.

  5. Flow battery - Wikipedia

    en.wikipedia.org/wiki/Flow_battery

    A typical flow battery consists of two tanks of liquids which are pumped past a membrane held between two electrodes. [1]A flow battery, or redox flow battery (after reduction–oxidation), is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane.

  6. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material,; v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and

  7. Tafel equation - Wikipedia

    en.wikipedia.org/wiki/Tafel_equation

    The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification. The equation is named after Swiss chemist Julius Tafel . It describes how the electrical current through an electrode depends on the voltage difference between the electrode and the bulk electrolyte for a simple, unimolecular redox reaction.

  8. Butler–Volmer equation - Wikipedia

    en.wikipedia.org/wiki/Butler–Volmer_equation

    The upper graph shows the current density as function of the overpotential η . The anodic and cathodic current densities are shown as j a and j c, respectively for α=α a =α c =0.5 and j 0 =1mAcm −2 (close to values for platinum and palladium).

  9. Peukert's law - Wikipedia

    en.wikipedia.org/wiki/Peukert's_law

    For example, consider a battery with a capacity of 200 Ah at the C 20 rate (C 20 means the 20-hour rate – i.e. the rate that will fully discharge the battery in 20 hours – which in this case is 10 A). If this battery is discharged at 10 A, it will last 20 hours, giving the rated capacity of 200 Ah.