Search results
Results from the WOW.Com Content Network
In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
The unconditional expectation of rainfall for an unspecified day is the average of the rainfall amounts for those 3652 days. The conditional expectation of rainfall for an otherwise unspecified day known to be (conditional on being) in the month of March, is the average of daily rainfall over all 310 days of the ten–year period that fall in ...
The material conditional (also known as material implication) is an operation commonly used in logic.When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false.
First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.
Física o Química: El reencuentro was produced by Atresmedia TV in collaboration with Buendía Estudios , with the participation of Boomerang TV . [9] Writing duties were tasked to Carlos García Miranda, whereas the two episodes were directed by Juanma Pachón. [ 9 ]
Probability that D 1 = 2. Table 1 shows the sample space of 36 combinations of rolled values of the two dice, each of which occurs with probability 1/36, with the numbers displayed in the red and dark gray cells being D 1 + D 2. D 1 = 2 in exactly 6 of the 36 outcomes; thus P(D 1 = 2) = 6 ⁄ 36 = 1 ⁄ 6:
If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .