enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thévenin's theorem - Wikipedia

    en.wikipedia.org/wiki/Thévenin's_theorem

    As a mnemonic, the Thevenin replacements for voltage and current sources can be remembered as the sources' values (meaning their voltage or current) are set to zero. A zero valued voltage source would create a potential difference of zero volts between its terminals, just like an ideal short circuit would do, with two leads touching; therefore ...

  3. Norton's theorem - Wikipedia

    en.wikipedia.org/wiki/Norton's_theorem

    The Norton equivalent circuit is used to represent any network of linear sources and impedances at a given frequency. Norton's theorem and its dual, Thévenin's theorem , are widely used for circuit analysis simplification and to study circuit's initial-condition and steady-state response.

  4. Source transformation - Wikipedia

    en.wikipedia.org/wiki/Source_transformation

    Application of Thévenin's theorem and Norton's theorem gives the quantities associated with the equivalence. Specifically, given a real current source, which is an ideal current source I {\displaystyle I} in parallel with an impedance Z {\displaystyle Z} , applying a source transformation gives an equivalent real voltage source, which is an ...

  5. Output impedance - Wikipedia

    en.wikipedia.org/wiki/Output_impedance

    Mathematically, current and voltage sources can be converted to each other using Thévenin's theorem and Norton's theorem. In the case of a nonlinear device , such as a transistor , the term "output impedance" usually refers to the effect upon a small-amplitude signal, and will vary with the bias point of the transistor, that is, with the ...

  6. Equivalent impedance transforms - Wikipedia

    en.wikipedia.org/wiki/Equivalent_impedance...

    Also well known are the Norton and Thévenin equivalent current generator and voltage generator circuits respectively, as is the Y-Δ transform. None of these are discussed in detail here; the individual linked articles should be consulted. The number of equivalent circuits that a linear network can be transformed into is unbounded.

  7. Johnson–Nyquist noise - Wikipedia

    en.wikipedia.org/wiki/Johnson–Nyquist_noise

    Figure 4. These circuits are equivalent: (A) A resistor at nonzero temperature with internal thermal noise; (B) Its Thévenin equivalent circuit: a noiseless resistor in series with a noise voltage source; (C) Its Norton equivalent circuit: a noiseless resistance in parallel with a noise current source.

  8. 9 Things Boomers Had That Millennials And Gen Z Will ... - AOL

    www.aol.com/finance/9-things-boomers-had...

    In the 1980s, the median home price in the U.S. was $47,200 ($170,000 adjusted for inflation). In 2025, the median home price is $400,000, and wages are failing to keep up.

  9. Edward Lawry Norton - Wikipedia

    en.wikipedia.org/wiki/Edward_Lawry_Norton

    Edward Lawry Norton (July 28, 1898 – January 28, 1983) was an accomplished engineer and scientist. He worked at Bell Labs and is known for Norton's theorem . His areas of active research included network theory, acoustical systems, electromagnetic apparatus, and data transmission.