Search results
Results from the WOW.Com Content Network
Diagram depicting the sources and cycles of acid rain precipitation. Freshwater acidification occurs when acidic inputs enter a body of fresh water through the weathering of rocks, invasion of acidifying gas (e.g. carbon dioxide), or by the reduction of acid anions, like sulfate and nitrate within a lake, pond, or reservoir. [1]
The original reaction was a mixture of the reagents phenol, chloroform, and acetone in the presence of a sodium hydroxide solution. [2] Prior to Bargellini's research, the product attributed to this multi-component reaction (MCR) had been described as a phenol derivative in chemistry texts at the time.
Acetone (2-propanone or dimethyl ketone) is an organic compound with the formula (CH 3) 2 CO. [22] It is the simplest and smallest ketone (R−C(=O)−R').It is a colorless, highly volatile, and flammable liquid with a characteristic pungent odour, very reminiscent of the smell of pear drops.
[1] [2] The more acidic the acid rain is, the lower its pH is. [2] Acid rain can have harmful effects on plants, aquatic animals, and infrastructure. Acid rain is caused by emissions of sulfur dioxide and nitrogen oxide, which react with the water molecules in the atmosphere to produce acids. Acid rain has been shown to have adverse impacts on ...
Protic solvents react with strong nucleophiles with good basic character in an acid/base fashion, thus decreasing or removing the nucleophilic nature of the nucleophile. The following table shows the effect of solvent polarity on the relative reaction rates of the S N 2 reaction of 1-bromobutane with azide (N 3 – ).
Molecular models of the different molecules active in Piranha solution: peroxysulfuric acid (H 2 SO 5) and hydrogen peroxide (H 2 O 2). Piranha solution, also known as piranha etch, is a mixture of sulfuric acid (H 2 SO 4) and hydrogen peroxide (H 2 O 2). The resulting mixture is used to clean organic residues off substrates, for example ...
Alginate, carboxymethylcellulose, polyacrylic acid, tannic acid and polyphosphates can form extended networks between protein molecules in solution. The effectiveness of these polyelectrolytes depend on the pH of the solution. Anionic polyelectrolytes are used at pH values less than the isoelectric point.
Acetic acid is an example of a weak acid. The pH of the neutralized solution resulting from HA + OH − → H 2 O + A −. is not close to 7, as with a strong acid, but depends on the acid dissociation constant, K a, of the acid. The pH at the end-point or equivalence point in a titration may be calculated as follows.