enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  3. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]

  4. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  5. Hess's law - Wikipedia

    en.wikipedia.org/wiki/Hess's_law

    A representation of Hess's law (where H represents enthalpy) Hess's law of constant heat summation, also known simply as Hess's law, is a relationship in physical chemistry and thermodynamics [1] named after Germain Hess, a Swiss-born Russian chemist and physician who published it in 1840.

  6. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)

  7. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    For example, when a person pushes a heavy box a few metres forward, that person exerts mechanical energy, also known as work, on the box over a distance of a few meters forward. The mathematical definition of this form of energy is the product of the force exerted on the object and the distance by which the box moved ( Work = Force × Distance ).

  8. Chemical thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Chemical_thermodynamics

    In solution chemistry and biochemistry, the Gibbs free energy decrease (∂G/∂ξ, in molar units, denoted cryptically by ΔG) is commonly used as a surrogate for (−T times) the global entropy produced by spontaneous chemical reactions in situations where no work is being done; or at least no "useful" work; i.e., other than perhaps ± P dV.

  9. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.