enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alpha particle - Wikipedia

    en.wikipedia.org/wiki/Alpha_particle

    Secondly, he found the charge-to-mass ratio of alpha particles to be half that of the hydrogen ion. Rutherford proposed three explanations: 1) an alpha particle is a hydrogen molecule (H 2) with a charge of 1 e; 2) an alpha particle is an atom of helium with a charge of 2 e; 3) an alpha particle is half a helium atom with a charge of 1 e.

  3. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    Per unit of energy, alpha particles are at least 20 times more effective at cell-damage than gamma rays and X-rays. See relative biological effectiveness for a discussion of this. Examples of highly poisonous alpha-emitters are all isotopes of radium , radon , and polonium , due to the amount of decay that occur in these short half-life materials.

  4. Beta particle - Wikipedia

    en.wikipedia.org/wiki/Beta_particle

    A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β − decay and β + decay, which produce electrons and positrons, respectively.

  5. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    An example is internal conversion, which results in an initial electron emission, and then often further characteristic X-rays and Auger electrons emissions, although the internal conversion process involves neither beta nor gamma decay. A neutrino is not emitted, and none of the electron(s) and photon(s) emitted originate in the nucleus, even ...

  6. Radioanalytical chemistry - Wikipedia

    en.wikipedia.org/wiki/Radioanalytical_chemistry

    The importance of radioanalytical chemistry spans many fields including chemistry, physics, medicine, pharmacology, biology, ecology, hydrology, geology, forensics, atmospheric sciences, health protection, archeology, and engineering. Applications include: forming and characterizing new elements, determining the age of materials, and creating ...

  7. Alpha decay - Wikipedia

    en.wikipedia.org/wiki/Alpha_decay

    It is the most common form because of the combined extremely high nuclear binding energy and relatively small mass of the alpha particle. Like other cluster decays, alpha decay is fundamentally a quantum tunneling process. Unlike beta decay, it is governed by the interplay between both the strong nuclear force and the electromagnetic force.

  8. Ionizing radiation - Wikipedia

    en.wikipedia.org/wiki/Ionizing_radiation

    The penetrating power of x-ray, gamma, beta, and positron radiation is used for medical imaging, nondestructive testing, and a variety of industrial gauges. Radioactive tracers are used in medical and industrial applications, as well as biological and radiation chemistry. Alpha radiation is used in static eliminators and smoke detectors.

  9. Radiochemistry - Wikipedia

    en.wikipedia.org/wiki/Radiochemistry

    β (beta) radiation—the transmutation of a neutron into an electron and a proton. After this happens, the electron is emitted from the nucleus into the electron cloud. 3. γ (gamma) radiation—the emission of electromagnetic energy (such as gamma rays) from the nucleus of an atom. This usually occurs during alpha or beta radioactive decay.