Search results
Results from the WOW.Com Content Network
If a connected graph is a Cartesian product, it can be factorized uniquely as a product of prime factors, graphs that cannot themselves be decomposed as products of graphs. [2] However, Imrich & Klavžar (2000) describe a disconnected graph that can be expressed in two different ways as a Cartesian product of prime graphs:
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
Random graphs may be described simply by a probability distribution, or by a random process which generates them. [1] [2] The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of typical graphs.
The strong product is one of several different graph product operations that have been studied in graph theory. The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs. An example of a strong product is the king's graph ...
If H is a two-vertex complete graph K 2, then for any graph G, the rooted product of G and H has domination number exactly half of its number of vertices. Every connected graph in which the domination number is half the number of vertices arises in this way, with the exception of the four-vertex cycle graph.
Simple example of a Pareto chart using hypothetical data showing the relative frequency of reasons for arriving late at work. A Pareto chart is a type of chart that contains both bars and a line graph, where individual values are represented in descending order by bars, and the cumulative total is represented by the line.
A vertex-signed graph, sometimes called a marked graph, is a graph whose vertices are given signs. A circle is called consistent (but this is unrelated to logical consistency) or harmonious if the product of its vertex signs is positive, and inconsistent or inharmonious if the product is negative. There is no simple characterization of ...
The lexicographic product of graphs. In graph theory, the lexicographic product or (graph) composition G ∙ H of graphs G and H is a graph such that the vertex set of G ∙ H is the cartesian product V(G) × V(H); and; any two vertices (u,v) and (x,y) are adjacent in G ∙ H if and only if either u is adjacent to x in G or u = x and v is ...