enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph product - Wikipedia

    en.wikipedia.org/wiki/Graph_product

    In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.

  3. Cartesian product of graphs - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product_of_graphs

    If a connected graph is a Cartesian product, it can be factorized uniquely as a product of prime factors, graphs that cannot themselves be decomposed as products of graphs. [2] However, Imrich & Klavžar (2000) describe a disconnected graph that can be expressed in two different ways as a Cartesian product of prime graphs:

  4. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Often, the problem is to decompose a graph into subgraphs isomorphic to a fixed graph; for instance, decomposing a complete graph into Hamiltonian cycles. Other problems specify a family of graphs into which a given graph should be decomposed, for instance, a family of cycles, or decomposing a complete graph K n into n − 1 specified trees ...

  5. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  6. Lexicographic product of graphs - Wikipedia

    en.wikipedia.org/.../Lexicographic_product_of_graphs

    The lexicographic product of graphs. In graph theory, the lexicographic product or (graph) composition G ∙ H of graphs G and H is a graph such that the vertex set of G ∙ H is the cartesian product V(G) × V(H); and; any two vertices (u,v) and (x,y) are adjacent in G ∙ H if and only if either u is adjacent to x in G or u = x and v is ...

  7. Strong product of graphs - Wikipedia

    en.wikipedia.org/wiki/Strong_product_of_graphs

    The strong product is one of several different graph product operations that have been studied in graph theory. The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs. An example of a strong product is the king's graph ...

  8. Statistical graphics - Wikipedia

    en.wikipedia.org/wiki/Statistical_graphics

    Statistical graphics have been central to the development of science and date to the earliest attempts to analyse data. Many familiar forms, including bivariate plots, statistical maps, bar charts, and coordinate paper were used in the 18th century.

  9. Rooted product of graphs - Wikipedia

    en.wikipedia.org/wiki/Rooted_product_of_graphs

    If H is a two-vertex complete graph K 2, then for any graph G, the rooted product of G and H has domination number exactly half of its number of vertices. Every connected graph in which the domination number is half the number of vertices arises in this way, with the exception of the four-vertex cycle graph.