Search results
Results from the WOW.Com Content Network
Assume the following values for an Earth centered Kepler orbit r 1 = 10000 km; r 2 = 16000 km; α = 100° These are the numerical values that correspond to figures 1, 2, and 3. Selecting the parameter y as 30000 km one gets a transfer time of 3072 seconds assuming the gravitational constant to be = 398603 km 3 /s 2. Corresponding orbital ...
For example, the Moon's gravitational influence on a high-Earth orbiting satellite is significantly different than its influence on Earth, so observers in an ECI frame would have to account for this acceleration difference in their laws of motion. The closer the observed object is to the ECI-origin, the less significant the effect of the ...
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
The most prominent example of the classical two-body problem is the gravitational case (see also Kepler problem), arising in astronomy for predicting the orbits (or escapes from orbit) of objects such as satellites, planets, and stars. A two-point-particle model of such a system nearly always describes its behavior well enough to provide useful ...
In practice, using a frame of reference based upon the fixed stars as though it were an inertial frame of reference introduces little discrepancy. For example, the centrifugal acceleration of the Earth because of its rotation about the Sun is about thirty million times greater than that of the Sun about the galactic center. [43]
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
In astrophysics, the Darwin–Radau equation (named after Rodolphe Radau and Charles Galton Darwin) gives an approximate relation between the moment of inertia factor of a planetary body and its rotational speed and shape. The moment of inertia factor is directly related to the largest principal moment of inertia, C.
An example is the calculation of the rotational kinetic energy of the Earth. As the Earth has a sidereal rotation period of 23.93 hours, it has an angular velocity of 7.29 × 10 −5 rad·s −1. [2] The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J.