Search results
Results from the WOW.Com Content Network
In applied statistics, the Morris method for global sensitivity analysis is a so-called one-factor-at-a-time method, meaning that in each run only one input parameter is given a new value. It facilitates a global sensitivity analysis by making a number r {\displaystyle r} of local changes at different points x ( 1 → r ) {\displaystyle x(1 ...
moving one input variable, keeping others at their baseline (nominal) values, then, returning the variable to its nominal value, then repeating for each of the other inputs in the same way. Sensitivity may then be measured by monitoring changes in the output, e.g. by partial derivatives or linear regression. This appears a logical approach as ...
Variance-based sensitivity analysis (often referred to as the Sobol’ method or Sobol’ indices, after Ilya M. Sobol’) is a form of global sensitivity analysis. [ 1 ] [ 2 ] Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs.
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
Fourier amplitude sensitivity testing (FAST) is a variance-based global sensitivity analysis method. The sensitivity value is defined based on conditional variances which indicate the individual or joint effects of the uncertain inputs on the output.
The one-factor-at-a-time method, [1] also known as one-variable-at-a-time, OFAT, OF@T, OFaaT, OVAT, OV@T, OVaaT, or monothetic analysis is a method of designing experiments involving the testing of factors, or causes, one at a time instead of multiple factors simultaneously.
One may wish to compute several values of ^ from several samples, and average them, to calculate an empirical approximation of [^], but this is impossible when there are no "other samples" when the entire set of available observations ,..., was used to calculate ^. In this kind of situation the jackknife resampling technique may be of help.
IRLS can be used for ℓ 1 minimization and smoothed ℓ p minimization, p < 1, in compressed sensing problems. It has been proved that the algorithm has a linear rate of convergence for ℓ 1 norm and superlinear for ℓ t with t < 1, under the restricted isometry property, which is generally a sufficient condition for sparse solutions.