Search results
Results from the WOW.Com Content Network
Barnard's Star's transverse speed is 90 km/s and its radial velocity is 111 km/s (perpendicular (at a right, 90° angle), which gives a true or "space" motion of 142 km/s. True or absolute motion is more difficult to measure than the proper motion, because the true transverse velocity involves the product of the proper motion times the distance.
Stars slowly lose mass by the emission of a stellar wind from the photosphere. The star's magnetic field exerts a torque on the ejected matter, resulting in a steady transfer of angular momentum away from the star. Stars with a rate of rotation greater than 15 km/s also exhibit more rapid mass loss, and consequently a faster rate of rotation decay.
There is no specific velocity that is considered high, but the proper motion article notes that the majority of stars have a proper motion of 0.01 arc-seconds per year. Note that the closer a star is to earth, the faster it will appear to travel in arc-seconds per year for a given "real" velocity; therefore, the PM values here are apparent ...
In the Milky Way, stars usually have velocities on the order of 100 km/s, whereas hypervelocity stars typically have velocities on the order of 1000 km/s. Most of these fast-moving stars are thought to be produced near the center of the Milky Way, where there is a larger population of these objects than further out.
The change in angle is of the order of v/c where c is the speed of light and v the velocity of the observer. In the case of "stellar" or "annual" aberration, the apparent position of a star to an observer on Earth varies periodically over the course of a year as the Earth's velocity changes as it revolves around the Sun, by a maximum angle of ...
In 1932, Jan Hendrik Oort became the first to report that measurements of the stars in the solar neighborhood indicated that they moved faster than expected when a mass distribution based upon visible matter was assumed, but these measurements were later determined to be essentially erroneous. [6]
The more inelastic, the larger the lag angle. The larger the difference in angular velocities (ω/Ω), the larger the lag angle. If ω > Ω, the lag angle will be in the other direction. For a star we can think of inelasticity as viscosity. The main cause of inelasticity in a star seems to be convection forces inside the star. [1]
The concept of the position angle is inherited from nautical navigation on the oceans, where the optimum compass course is the course from a known position s to a target position t with minimum effort. Setting aside the influence of winds and ocean currents, the optimum course is the course of smallest distance between the two positions on the ...