Search results
Results from the WOW.Com Content Network
The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).
The bond energy for H 2 O is the average energy required to break each of the two O–H bonds in sequence: Although the two bonds are the equivalent in the original symmetric molecule, the bond-dissociation energy of an oxygen–hydrogen bond varies slightly depending on whether or not there is another hydrogen atom bonded to the oxygen atom.
The dissociation of salts by solvation in a solution, such as water, means the separation of the anions and cations. The salt can be recovered by evaporation of the solvent. An electrolyte refers to a substance that contains free ions and can be used as an electrically conductive medium.
In molecular spectroscopy, the Birge–Sponer method or Birge–Sponer plot is a way to calculate the dissociation energy of a molecule. This method takes its name from Raymond Thayer Birge and Hertha Sponer, the two physical chemists that developed it.
Bond energy and bond-dissociation energy are measures of the binding energy between the atoms in a chemical bond. It is the energy required to disassemble a molecule into its constituent atoms. This energy appears as chemical energy , such as that released in chemical explosions , the burning of chemical fuel and biological processes.
Bond dissociation energy is determined by multiple factors: [4] The bond dissociation energy depends on the electronegativity of the species bonded. Electronegativity. Less electronegative atoms are better stabilizers of radicals, meaning that a bond between two electronegative atoms will have a higher BDE than a similar molecule with two less ...
The triplet and singlet excitation energies of a sigma bond can be used to determine if a bond will follow the homolytic or heterolytic pathway. [2] A metal−metal sigma bond is an exception because the bond's excitation energy is extremely high, thus cannot be used for observation purposes. [2] In some cases, bond cleavage requires catalysts.
Heats of formations are intimately related to bond-dissociation energies and thus are important in understanding chemical structure and reactivity. [2] Furthermore, although the theory is old, it still is practically useful as one of the best group-contribution methods aside from computational methods such as molecular mechanics. However, the ...