Search results
Results from the WOW.Com Content Network
The divergence of the harmonic series implies that crossings of any length are possible with enough fuel. [ 23 ] For instance, for Alcuin's version of the problem, r = 30 {\displaystyle r=30} : a camel can carry 30 measures of grain and can travel one leuca while eating a single measure, where a leuca is a unit of distance roughly equal to 2.3 ...
This was proved by Leonhard Euler in 1737, [1] and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series).
Those methods work on oscillating divergent series, but they cannot produce a finite answer for a series that diverges to +∞. [6] Most of the more elementary definitions of the sum of a divergent series are stable and linear, and any method that is both stable and linear cannot sum 1 + 2 + 3 + ⋯ to a finite value (see § Heuristics below) .
The harmonic numbers roughly approximate the natural logarithm function [2]: 143 and thus the associated harmonic series grows without limit, albeit slowly. In 1737, Leonhard Euler used the divergence of the harmonic series to provide a new proof of the infinity of prime numbers.
A harmonic divisor number is a positive integer whose divisors have a harmonic mean that is an integer. The first five of these are 1, 6, 28, 140, and 270. It is not known whether any harmonic divisor numbers (besides 1) are odd, but there are no odd ones less than 10 24. The sum of the reciprocals of the divisors of a perfect number is 2.
for every ε > 0, and whether the corresponding series of the f(n) still diverges. Once such a sequence is found, a similar question can be asked with f(n) taking the role of 1/n, and so on. In this way it is possible to investigate the borderline between divergence and convergence of infinite series.
For premium support please call: 800-290-4726 more ways to reach us
If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]