enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Here’s why the universe has more matter than antimatter - AOL

    www.aol.com/why-universe-more-matter-antimatter...

    All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.

  3. Baryogenesis - Wikipedia

    en.wikipedia.org/wiki/Baryogenesis

    In physical cosmology, baryogenesis (also known as baryosynthesis [1] [2]) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, the observation that only matter and not antimatter (antibaryons) is detected in universe other than in cosmic ray collisions.

  4. Baryon asymmetry - Wikipedia

    en.wikipedia.org/wiki/Baryon_asymmetry

    In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, [1] [2] is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in the observable universe.

  5. Exotic matter - Wikipedia

    en.wikipedia.org/wiki/Exotic_matter

    Antimatter – Material composed of antiparticles of the corresponding particles of ordinary matter; Dark energy – Energy driving the accelerated expansion of the universe; Dark matter – Concept in cosmology; Gravitational interaction of antimatter – Theory of gravity on antimatter; Mirror matter – Hypothetical counterpart to ordinary ...

  6. CP violation - Wikipedia

    en.wikipedia.org/wiki/CP_violation

    The Big Bang should have produced equal amounts of matter and antimatter if CP-symmetry was preserved; as such, there should have been total cancellation of both—protons should have cancelled with antiprotons, electrons with positrons, neutrons with antineutrons, and so on. This would have resulted in a sea of radiation in the universe with ...

  7. Alpha Magnetic Spectrometer - Wikipedia

    en.wikipedia.org/wiki/Alpha_Magnetic_Spectrometer

    The visible matter in the Universe, such as stars, adds up to less than 5 percent of the total mass that is known to exist from many other observations. The other 95 percent is dark, either dark matter, which is estimated at 20 percent of the Universe by weight, or dark energy, which makes up the balance. The exact nature of both still is unknown.

  8. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...

  9. Antihydrogen - Wikipedia

    en.wikipedia.org/wiki/Antihydrogen

    Scientists hope that studying antihydrogen may shed light on the question of why there is more matter than antimatter in the observable universe, known as the baryon asymmetry problem. [1] Antihydrogen is produced artificially in particle accelerators .