enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    Binary is also easily converted to the octal numeral system, since octal uses a radix of 8, which is a power of two (namely, 2 3, so it takes exactly three binary digits to represent an octal digit). The correspondence between octal and binary numerals is the same as for the first eight digits of hexadecimal in the table above. Binary 000 is ...

  3. Octal - Wikipedia

    en.wikipedia.org/wiki/Octal

    Octal was an ideal abbreviation of binary for these machines because their word size is divisible by three (each octal digit represents three binary digits). So two, four, eight or twelve digits could concisely display an entire machine word.

  4. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    Computer engineers often need to write out binary quantities, but in practice writing out a binary number such as 1001001101010001 is tedious and prone to errors. Therefore, binary quantities are written in a base-8, or "octal", or, much more commonly, a base-16, "hexadecimal" (hex), number format. In the decimal system, there are 10 digits, 0 ...

  5. Octet (computing) - Wikipedia

    en.wikipedia.org/wiki/Octet_(computing)

    Octets can be represented using number systems of varying bases such as the hexadecimal, decimal, or octal number systems. The binary value of all eight bits set (or activated) is 11111111 2, equal to the hexadecimal value FF 16, the decimal value 255 10, and the octal value 377 8. One octet can be used to represent decimal values ranging from ...

  6. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    When converting from binary to octal every 3 bits relate to one and only one octal digit. Hexadecimal, decimal, octal, and a wide variety of other bases have been used for binary-to-text encoding, implementations of arbitrary-precision arithmetic, and other applications. For a list of bases and their applications, see list of numeral systems.

  7. Hexadecimal - Wikipedia

    en.wikipedia.org/wiki/Hexadecimal

    In mathematics and computing, the hexadecimal (also base-16 or simply hex) numeral system is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 ...

  8. Quaternary numeral system - Wikipedia

    en.wikipedia.org/wiki/Quaternary_numeral_system

    As with the octal and hexadecimal numeral systems, quaternary has a special relation to the binary numeral system. Each radix four, eight, and sixteen is a power of two, so the conversion to and from binary is implemented by matching each digit with two, three, or four binary digits, or bits. For example, in quaternary,

  9. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    Positional systems obtained by grouping binary digits by three (octal numeral system) or four (hexadecimal numeral system) are commonly used. For very large integers, bases 2 32 or 2 64 (grouping binary digits by 32 or 64, the length of the machine word) are used, as, for example, in GMP.