enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances. If an object fell 10 000 m to Earth, then the results of both ...

  3. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Terminal velocity. The downward force of gravity (Fg) equals the restraining force of drag (Fd) plus the buoyancy. The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example).

  4. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    Free fall. In classical mechanics, free fall is any motion of a body where gravity is the only force acting upon it. A freely falling object may not necessarily be falling down in the vertical direction. An object moving upwards might not normally be considered to be falling, but if it is subject to only the force of gravity, it is said to be ...

  5. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    Aerodynamic force. The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil. In fluid mechanics, an aerodynamic force is a force exerted on a body by the air (or other gas) in which the body is immersed, and is due ...

  6. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    Kutta–Joukowski theorem. The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated. The theorem ...

  7. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    v. t. e. In astrodynamics, the vis-viva equation, also referred to as orbital-energy-invariance law or Burgas formula[1][better source needed], is one of the equations that model the motion of orbiting bodies. It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is ...

  8. Air velocity - Wikipedia

    en.wikipedia.org/wiki/Air_velocity

    Print/export Download as PDF; Printable version; Air velocity may refer to: Wind speed, the speed of the air currents; Airspeed, the speed of an ...

  9. Log wind profile - Wikipedia

    en.wikipedia.org/wiki/Log_wind_profile

    The log wind profile is a semi-empirical relationship commonly used to describe the vertical distribution of horizontal mean wind speeds within the lowest portion of the planetary boundary layer. The relationship is well described in the literature. [1]