enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.

  3. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    As originally proposed by Google, [11] each CoT prompt included a few Q&A examples. This made it a few-shot prompting technique. However, according to researchers at Google and the University of Tokyo, simply appending the words "Let's think step-by-step", [21] has also proven effective, which makes CoT a zero-shot prompting technique.

  4. List of large language models - Wikipedia

    en.wikipedia.org/wiki/List_of_large_language_models

    LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. This page lists notable large language models. For the training cost column, 1 petaFLOP-day = 1 petaFLOP/sec × 1 day = 8.64E19 FLOP. Also, only the largest model's cost is written.

  5. Language model - Wikipedia

    en.wikipedia.org/wiki/Language_model

    A language model is a probabilistic model of a natural language. [1] In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.

  6. Wikipedia:Large language models - Wikipedia

    en.wikipedia.org/wiki/Wikipedia:Large_language...

    LLMs are pattern completion programs: They generate text by outputting the words most likely to come after the previous ones. They learn these patterns from their training data, which includes a wide variety of content from the Internet and elsewhere, including works of fiction, low-effort forum posts, unstructured and low-quality content for ...

  7. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    Since the transformer architecture enabled massive parallelization, GPT models could be trained on larger corpora than previous NLP (natural language processing) models.. While the GPT-1 model demonstrated that the approach was viable, GPT-2 would further explore the emergent properties of networks trained on extremely large corpo

  8. Gemini (language model) - Wikipedia

    en.wikipedia.org/wiki/Gemini_(language_model)

    Gemini's launch was preluded by months of intense speculation and anticipation, which MIT Technology Review described as "peak AI hype". [49] [20] In August 2023, Dylan Patel and Daniel Nishball of research firm SemiAnalysis penned a blog post declaring that the release of Gemini would "eat the world" and outclass GPT-4, prompting OpenAI CEO Sam Altman to ridicule the duo on X (formerly Twitter).

  9. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    Bidirectional encoder representations from transformers (BERT) is a language model introduced in October 2018 by researchers at Google. [1] [2] It learns to represent text as a sequence of vectors using self-supervised learning.