Search results
Results from the WOW.Com Content Network
Zinc nitrate is usually prepared by dissolving zinc metal, zinc oxide, or related materials in nitric acid: Zn + 2 HNO 3 → Zn(NO 3) 2 + H 2 ZnO + 2 HNO 3 → Zn(NO 3) 2 + H 2 O. These reactions are accompanied by the hydration of the zinc nitrate. The anhydrous salt arises by the reaction of anhydrous zinc chloride with nitrogen dioxide: [1]
Zinc is a strong reducing agent with a standard redox potential of −0.76 V. Pure zinc tarnishes rapidly in air, rapidly forming a passive layer. The composition of this layer can be complex, but one constituent is probably basic zinc carbonate, Zn 5 (OH) 6 CO 3. [8] The reaction of zinc with water is slowed by this passive layer.
Zinc nitride reacts violently with water to form ammonia and zinc oxide. [3] [4] Zn 3 N 2 + 3 H 2 O → 3 ZnO + 2 NH 3. Zinc nitride reacts with lithium (produced in an electrochemical cell) by insertion. The initial reaction is the irreversible conversion into LiZn in a matrix of beta-Li 3 N. These products then can be converted reversibly and ...
The reaction with hydrochloric acid is an equilibrium reaction that favors formation of tetrachloroaurate(III) anions. This results in a removal of gold ions from solution and allows further oxidation of gold to take place. The gold dissolves to become chloroauric acid. In addition, gold may be dissolved by the chlorine present in aqua regia.
Nitric acid is an inorganic compound with the formula H N O 3. It is a highly corrosive mineral acid. [6] The compound is colorless, but samples tend to acquire a yellow cast over time due to decomposition into oxides of nitrogen. Most commercially available nitric acid has a concentration of 68% in water.
Most aquo complexes are mono-nuclear, with the general formula [M(H 2 O) 6] n+, with n = 2 or 3; they have an octahedral structure. The water molecules function as Lewis bases, donating a pair of electrons to the metal ion and forming a dative covalent bond with it. Typical examples are listed in the following table.
Zinc oxide is an inorganic compound with the formula Zn O.It is a white powder which is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, food supplements, rubbers, plastics, ceramics, glass, cement, lubricants, [12] paints, sunscreens, ointments, adhesives, sealants, pigments, foods, batteries, ferrites, fire retardants, semi conductors ...
The reaction produces a primary, secondary, or tertiary alcohol via a 1,2-addition. The Barbier reaction is advantageous because it is a one-pot process: the organozinc reagent is generated in the presence of the carbonyl substrate. Organozinc reagents are also less water sensitive, thus this reaction can be conducted in water.