enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    In mathematics, a self-adjoint operator on a complex vector space V with inner product , is a linear map A (from V to itself) that is its own adjoint. That is, A x , y = x , A y {\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle } for all x , y {\displaystyle x,y} ∊ V .

  3. Stone's theorem on one-parameter unitary groups - Wikipedia

    en.wikipedia.org/wiki/Stone's_theorem_on_one...

    The Stone–von Neumann theorem generalizes Stone's theorem to a pair of self-adjoint operators, (,), satisfying the canonical commutation relation, and shows that these are all unitarily equivalent to the position operator and momentum operator on ().

  4. Extensions of symmetric operators - Wikipedia

    en.wikipedia.org/wiki/Extensions_of_symmetric...

    An operator that has a unique self-adjoint extension is said to be essentially self-adjoint; equivalently, an operator is essentially self-adjoint if its closure (the operator whose graph is the closure of the graph of ) is self-adjoint. In general, a symmetric operator could have many self-adjoint extensions or none at all.

  5. Self-adjoint - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint

    The set of self-adjoint elements is a real linear subspace of . From the previous property, it follows that A {\displaystyle {\mathcal {A}}} is the direct sum of two real linear subspaces, i.e. A = A s a ⊕ i A s a {\displaystyle {\mathcal {A}}={\mathcal {A}}_{sa}\oplus \mathrm {i} {\mathcal {A}}_{sa}} .

  6. Symmetrizable compact operator - Wikipedia

    en.wikipedia.org/wiki/Symmetrizable_compact_operator

    In mathematics, a symmetrizable compact operator is a compact operator on a Hilbert space that can be composed with a positive operator with trivial kernel to produce a self-adjoint operator. Such operators arose naturally in the work on integral operators of Hilbert, Korn, Lichtenstein and Marty required to solve elliptic boundary value ...

  7. Linear Operators (book) - Wikipedia

    en.wikipedia.org/wiki/Linear_Operators_(book)

    Linear Operators is a three-volume textbook on the theory of linear operators, written by Nelson Dunford and Jacob T. Schwartz. The three volumes are (I) General Theory; (II) Spectral Theory, Self Adjoint Operators in Hilbert Space; and (III) Spectral Operators. The first volume was published in 1958, the second in 1963, and the third in 1971.

  8. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its Hermitian adjoint N*, that is: NN* = N*N. [1] Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood.

  9. Prolate spheroidal wave function - Wikipedia

    en.wikipedia.org/wiki/Prolate_spheroidal_wave...

    Similarly, let denote an ideal low-pass filtering operator, such that () = if and only if its Fourier transform is limited to [,]. The operator B D {\displaystyle BD} turns out to be linear, bounded and self-adjoint .