enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Latimer diagram - Wikipedia

    en.wikipedia.org/wiki/Latimer_diagram

    The easiest way to proceed is simply to use energies (nE) directly expressed in electron-volt (eV), because the Faraday constant F and the sign minus simplifies on both side of the equation. So, the values of E in volt must be simply multiplied by the number (n) of electron transferred in the considered half-reaction.

  3. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    Electrode potentials of successive elementary half-reactions cannot be directly added. However, the corresponding Gibbs free energy changes (∆G°) must satisfy ∆G° = – z FE°, where z electrons are transferred, and the Faraday constant F is the conversion factor describing Coulombs transferred per mole electrons. Those Gibbs free energy ...

  4. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [ 1 ] [ 2 ] The actual physiological potential depends on the ratio of the reduced ( Red ) and oxidized ( Ox ) forms according to the Nernst equation and the thermal voltage .

  5. Redox - Wikipedia

    en.wikipedia.org/wiki/Redox

    There are two classes of redox reactions: Electron-transfer – Only one (usually) electron flows from the atom, ion, or molecule being oxidized to the atom, ion, or molecule that is reduced. This type of redox reaction is often discussed in terms of redox couples and electrode potentials.

  6. Ionic bonding - Wikipedia

    en.wikipedia.org/wiki/Ionic_bonding

    Ionic bonding can result from a redox reaction when atoms of an element (usually metal), whose ionization energy is low, give some of their electrons to achieve a stable electron configuration. In doing so, cations are formed.

  7. Redox gradient - Wikipedia

    en.wikipedia.org/wiki/Redox_gradient

    Depiction of common redox reactions in the environment. Adapted from figures by Zhang [1] and Gorny. [2] Redox pairs are listed with the oxidizer (electron acceptor) in red and the reducer (electron donator) in black. Relative favorability of redox reactions in marine sediments based on energy.

  8. Reactivity series - Wikipedia

    en.wikipedia.org/wiki/Reactivity_series

    Going from the bottom to the top of the table the metals: increase in reactivity; lose electrons more readily to form positive ions; corrode or tarnish more readily; require more energy (and different methods) to be isolated from their compounds; become stronger reducing agents (electron donors).

  9. Chemical polarity - Wikipedia

    en.wikipedia.org/wiki/Chemical_polarity

    A completely polar bond is more correctly called an ionic bond, and occurs when the difference between electronegativities is large enough that one atom actually takes an electron from the other. The terms "polar" and "nonpolar" are usually applied to covalent bonds , that is, bonds where the polarity is not complete.