Search results
Results from the WOW.Com Content Network
In physics, black hole thermodynamics [1] is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons.As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the ...
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
The Schwarzschild solution, taken to be valid for all r > 0, is called a Schwarzschild black hole. It is a perfectly valid solution of the Einstein field equations, although (like other black holes) it has rather bizarre properties. For r < r s the Schwarzschild radial coordinate r becomes timelike and the time coordinate t becomes spacelike. [22]
A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry. All celestial objects – planets, stars , galaxies, black holes – spin. [1] [2] [3] The boundaries of a Kerr black hole relevant to astrophysics. Note that there are no physical "surfaces" as such.
A classification of black holes by mass: Micro black hole and extra-dimensional black hole; Planck length; Primordial black hole, a hypothetical leftover of the Big Bang; Stellar black hole, which could either be a static black hole or a rotating black hole; Supermassive black hole, which could also either be a static black hole or a rotating ...
Numerical relativity is applied to many areas, such as cosmological models, critical phenomena, perturbed black holes and neutron stars, and the coalescence of black holes and neutron stars, for example. In any of these cases, Einstein's equations can be formulated in several ways that allow us to evolve the dynamics.
In the mathematical description of general relativity, the Boyer–Lindquist coordinates [1] are a generalization of the coordinates used for the metric of a Schwarzschild black hole that can be used to express the metric of a Kerr black hole. The Hamiltonian for particle motion in Kerr spacetime is separable in Boyer–Lindquist coordinates.
A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...