enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bounded operator - Wikipedia

    en.wikipedia.org/wiki/Bounded_operator

    A linear operator : between two topological vector spaces (TVSs) is called a bounded linear operator or just bounded if whenever is bounded in then () is bounded in . A subset of a TVS is called bounded (or more precisely, von Neumann bounded) if every neighborhood of the origin absorbs it.

  3. Compact operator - Wikipedia

    en.wikipedia.org/wiki/Compact_operator

    A bounded linear operator T : X → Y is called completely continuous if, for every weakly convergent sequence from X, the sequence () is norm-convergent in Y (Conway 1985, §VI.3). Compact operators on a Banach space are always completely continuous.

  4. Operator (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(mathematics)

    Then a linear operator from U to V is called bounded if there exists c > 0 such that ‖ ⁡ ‖ ‖ ‖ for every x in U. Bounded operators form a vector space. Bounded operators form a vector space.

  5. Spectral theory of compact operators - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory_of_compact...

    In functional analysis, compact operators are linear operators on Banach spaces that map bounded sets to relatively compact sets. In the case of a Hilbert space H, the compact operators are the closure of the finite rank operators in the uniform operator topology. In general, operators on infinite-dimensional spaces feature properties that do ...

  6. Operator topologies - Wikipedia

    en.wikipedia.org/wiki/Operator_topologies

    On norm bounded sets of B(H), the weak (operator) and ultraweak topologies coincide. This can be seen via, for instance, the Banach–Alaoglu theorem . For essentially the same reason, the ultrastrong topology is the same as the strong topology on any (norm) bounded subset of B( H ) .

  7. Operator theory - Wikipedia

    en.wikipedia.org/wiki/Operator_theory

    In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators , and consideration may be given to nonlinear operators .

  8. Operator norm - Wikipedia

    en.wikipedia.org/wiki/Operator_norm

    In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces .

  9. Unitary operator - Wikipedia

    en.wikipedia.org/wiki/Unitary_operator

    Thus a unitary operator is a bounded linear operator that is both an isometry and a coisometry, [1] or, equivalently, a surjective isometry. [2] An equivalent definition is the following: Definition 2. A unitary operator is a bounded linear operator U : H → H on a Hilbert space H for which the following hold: U is surjective, and