Search results
Results from the WOW.Com Content Network
If : is a bounded linear operator from a normed space into some TVS then : is necessarily continuous; this is because any open ball centered at the origin in is both a bounded subset (which implies that () is bounded since is a bounded linear map) and a neighborhood of the origin in , so that is thus bounded on this neighborhood of the origin ...
In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem [1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.
A sequentially continuous linear map between two TVSs is always bounded, [1] but the converse requires additional assumptions to hold (such as the domain being bornological and the codomain being locally convex). If the domain is also a sequential space, then is sequentially continuous if and only if it is continuous.
Pavel Urysohn. In topology, the Tietze extension theorem (also known as the Tietze–Urysohn–Brouwer extension theorem or Urysohn-Brouwer lemma [1]) states that any real-valued, continuous function on a closed subset of a normal topological space can be extended to the entire space, preserving boundedness if necessary.
Every Lipschitz continuous map is uniformly continuous, and hence continuous. More generally, a set of functions with bounded Lipschitz constant forms an equicontinuous set. The Arzelà–Ascoli theorem implies that if {f n} is a uniformly bounded sequence of functions with bounded Lipschitz constant, then it has a convergent subsequence. By ...
A linear map : between two topological vector spaces is said to be compact if there exists a neighborhood of the origin in such that () is a relatively compact subset of . [ 3 ] Let X , Y {\displaystyle X,Y} be normed spaces and T : X → Y {\displaystyle T:X\to Y} a linear operator.
The following sets will constitute the basic open subsets of topologies on spaces of linear maps. For any subsets and , let (,):= {: ()}.. The family {(,):,} forms a neighborhood basis [1] at the origin for a unique translation-invariant topology on , where this topology is not necessarily a vector topology (that is, it might not make into a TVS).
Thus the image of a bounded set under a continuous operator is also bounded. Because of this property, the continuous linear operators are also known as bounded operators . In order to "measure the size" of A , {\displaystyle A,} one can take the infimum of the numbers c {\displaystyle c} such that the above inequality holds for all v ∈ V ...