Search results
Results from the WOW.Com Content Network
In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.
Velocity refers to a displacement in one direction with respect to an interval of time. It is defined as the rate of change of displacement over change in time. [7] Velocity is a vector quantity, representing a direction and a magnitude of movement. The magnitude of a velocity is called speed.
Idealized 3-D rendering of the cradle in motion. Newton's cradle is a device, usually made of metal, that demonstrates the principles of conservation of momentum and conservation of energy in physics with swinging spheres.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. [3] More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables.
Momentum space is the set of all momentum vectors p a physical system can have; the momentum vector of a particle corresponds to its motion, with dimension of mass ⋅ length ⋅ time −1. Mathematically, the duality between position and momentum is an example of Pontryagin duality .
The units and nature of each generalized momentum will depend on the corresponding coordinate; in this case p z is a translational momentum in the z direction, p s is also a translational momentum along the curve s is measured, and p φ is an angular momentum in the plane the angle φ is measured in. However complicated the motion of the system ...
The energy and momentum of an object measured in two inertial frames in energy–momentum space – the yellow frame measures E and p while the blue frame measures E ′ and p ′. The green arrow is the four-momentum P of an object with length proportional to its rest mass m 0.