Search results
Results from the WOW.Com Content Network
DPP dyes are based on the bicyclic heterocyclic compound diketopyrrolopyrrole. 2,5-Dihydropyrrolo[3,4-c]pyrrole-1,4-dione is a basic body of Diketopyrrolopyrrole dye. DPP pigments are an important class of high-performance pigments used in inks, paints and plastic.
Physical optics is also the name of an approximation commonly used in optics, electrical engineering and applied physics. In this context, it is an intermediate method between geometric optics, which ignores wave effects, and full wave electromagnetism, which is a precise theory.
Today, the pure science of optics is called optical science or optical physics to distinguish it from applied optical sciences, which are referred to as optical engineering. Prominent subfields of optical engineering include illumination engineering , photonics , and optoelectronics with practical applications like lens design , fabrication and ...
In optics, optical power (also referred to as dioptric power, refractive power, focusing power, or convergence power) is the degree to which a lens, mirror, or other optical system converges or diverges light. It is equal to the reciprocal of the focal length of the device: P = 1/f. [1] High optical power corresponds to short focal length.
A perfect optical system produces an image with the same etendue as the source. The etendue is related to the Lagrange invariant and the optical invariant, which also share the property of being constant in an ideal optical system. The radiance of an optical system is equal to the derivative of the radiant flux with respect to the etendue.
The marginal and chief rays together define the Lagrange invariant, which characterizes the throughput or etendue of the optical system. [9] Some authors define a "principal ray" for each object point, and in this case, the principal ray starting at an edge point of the object may then be called the marginal principal ray. [6]
Optical engineering is the field of engineering encompassing the physical phenomena and technologies associated with the generation, transmission, manipulation, detection, and utilization of light. [2] Optical engineers use the science of optics to solve problems and to design and build devices that make light do something useful. [3]
Optical systems can be folded using plane mirrors; the system is still considered to be rotationally symmetric if it possesses rotational symmetry when unfolded. Any point on the optical axis (in any space) is an axial point. Rotational symmetry greatly simplifies the analysis of optical systems, which otherwise must be analyzed in three ...