Search results
Results from the WOW.Com Content Network
Excel graph of the difference between two evaluations of the smallest root of a quadratic: direct evaluation using the quadratic formula (accurate at smaller b) and an approximation for widely spaced roots (accurate for larger b). The difference reaches a minimum at the large dots, and round-off causes squiggles in the curves beyond this minimum.
The absolute difference is used to define other quantities including the relative difference, the L 1 norm used in taxicab geometry, and graceful labelings in graph theory. When it is desirable to avoid the absolute value function – for example because it is expensive to compute, or because its derivative is not continuous – it can ...
The basic operation of linear interpolation between two values is commonly used in computer graphics. In that field's jargon it is sometimes called a lerp (from linear interpolation). The term can be used as a verb or noun for the operation. e.g. "Bresenham's algorithm lerps incrementally between the two endpoints of the line."
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
The mean absolute difference (univariate) is a measure of statistical dispersion equal to the average absolute difference of two independent values drawn from a probability distribution. A related statistic is the relative mean absolute difference , which is the mean absolute difference divided by the arithmetic mean , and equal to twice the ...
Three-dimensional plot showing the values of the logarithmic mean. In mathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient. This calculation is applicable in engineering problems involving heat and mass transfer.
Therefore, the true derivative of f at x is the limit of the value of the difference quotient as the secant lines get closer and closer to being a tangent line: ′ = (+) (). Since immediately substituting 0 for h results in 0 0 {\displaystyle {\frac {0}{0}}} indeterminate form , calculating the derivative directly can be unintuitive.
It is the mean divided by the standard deviation of a difference between two random values each from one of two groups. It was initially proposed for quality control [1] and hit selection [2] in high-throughput screening (HTS) and has become a statistical parameter measuring effect sizes for the comparison of any two groups with random values. [3]