enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Causal inference - Wikipedia

    en.wikipedia.org/wiki/Causal_inference

    Causal inference is the process of determining the independent, actual effect of a particular phenomenon that is a component of a larger system. The main difference between causal inference and inference of association is that causal inference analyzes the response of an effect variable when a cause of the effect variable is changed.

  3. Causal reasoning - Wikipedia

    en.wikipedia.org/wiki/Causal_reasoning

    Causal reasoning is the process of identifying causality: the relationship between a cause and its effect.The study of causality extends from ancient philosophy to contemporary neuropsychology; assumptions about the nature of causality may be shown to be functions of a previous event preceding a later one.

  4. Lord's paradox - Wikipedia

    en.wikipedia.org/wiki/Lord's_paradox

    Unlike descriptive statements (e.g. "the average height in the US is X"), causal statements involve a comparison between what happened and what would have happened absent an intervention. The latter is unobservable in the real world, a fact that Holland & Rubin term "the fundamental problem of causal inference" (pg. 10).

  5. Causal analysis - Wikipedia

    en.wikipedia.org/wiki/Causal_analysis

    Causal analysis is the field of experimental design and statistics pertaining to establishing cause and effect. [1] Typically it involves establishing four elements: correlation, sequence in time (that is, causes must occur before their proposed effect), a plausible physical or information-theoretical mechanism for an observed effect to follow from a possible cause, and eliminating the ...

  6. Exploratory causal analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_causal_analysis

    Causal analysis is the field of experimental design and statistical analysis pertaining to establishing cause and effect. [1] [2] Exploratory causal analysis (ECA), also known as data causality or causal discovery [3] is the use of statistical algorithms to infer associations in observed data sets that are potentially causal under strict assumptions.

  7. Category:Causal inference - Wikipedia

    en.wikipedia.org/wiki/Category:Causal_inference

    This page was last edited on 28 December 2023, at 16:32 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  8. Causal graph - Wikipedia

    en.wikipedia.org/wiki/Causal_graph

    Causal graphs can be used for communication and for inference. They are complementary to other forms of causal reasoning, for instance using causal equality notation . As communication devices, the graphs provide formal and transparent representation of the causal assumptions that researchers may wish to convey and defend.

  9. Causation (sociology) - Wikipedia

    en.wikipedia.org/wiki/Causation_(sociology)

    The identification of intervening variables and further replications of studies can also strengthen claims of causal inference. [3] Different methodological approaches make tradeoffs between statistical rigor (the ability to confidently attribute change to one variable or cause), qualitative depth, and finances available for research.