enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    Specific impulse (usually abbreviated I sp) is a measure of how efficiently a reaction mass engine, such as a rocket using propellant or a jet engine using fuel, generates thrust. In general, this is a ratio of the impulse , i.e. change in momentum, per mass of propellant.

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Jet propulsion - Wikipedia

    en.wikipedia.org/wiki/Jet_propulsion

    Specific impulse (usually abbreviated I sp) is a measure of how effectively a rocket uses propellant or jet engine uses fuel. By definition, it is the total impulse (or change in momentum) delivered per unit of propellant consumed [4] and is dimensionally equivalent to the generated thrust divided by the propellant mass flow rate or weight flow rate. [5]

  5. Rocket propellant - Wikipedia

    en.wikipedia.org/wiki/Rocket_propellant

    The rocket is launched using liquid hydrogen and liquid oxygen cryogenic propellants. Rocket propellant is used as reaction mass ejected from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

  6. Orbital maneuver - Wikipedia

    en.wikipedia.org/wiki/Orbital_maneuver

    Calculating a "finite" burn requires a detailed model of the spacecraft and its thrusters. The most important of details include: mass, center of mass, moment of inertia, thruster positions, thrust vectors, thrust curves, specific impulse, thrust centroid offsets, and fuel consumption.

  7. Propulsive efficiency - Wikipedia

    en.wikipedia.org/wiki/Propulsive_efficiency

    Unlike ducted engines, rockets give thrust even when the two speeds are equal. In 1903, Konstantin Tsiolkovsky discussed the average propulsive efficiency of a rocket, which he called the utilization (utilizatsiya), the "portion of the total work of the explosive material transferred to the rocket" as opposed to the exhaust gas. [6]

  8. Reaction engine - Wikipedia

    en.wikipedia.org/wiki/Reaction_engine

    If the energy is produced by the mass itself, as in a chemical rocket, the fuel value has to be /, where for the fuel value also the mass of the oxidizer has to be taken into account. A typical value is v e {\displaystyle v_{\text{e}}} = 4.5 km/s, corresponding to a fuel value of 10.1 MJ/kg.

  9. Gas turbine engine thrust - Wikipedia

    en.wikipedia.org/wiki/Gas_turbine_engine_thrust

    Most types of jet engine have an air intake, which provides the bulk of the fluid exiting the exhaust. Conventional rocket engines, however, do not have an intake, so ṁ air is zero. Therefore, rocket engines do not have ram drag and the gross thrust of the rocket engine nozzle is the net thrust of the engine.