Search results
Results from the WOW.Com Content Network
The connection Laplacian, also known as the rough Laplacian, is a differential operator acting on the various tensor bundles of a manifold, defined in terms of a Riemannian- or pseudo-Riemannian metric. When applied to functions (i.e. tensors of rank 0), the connection Laplacian is often called the Laplace–Beltrami operator.
The vector Laplace operator, also denoted by , is a differential operator defined over a vector field. [7] The vector Laplacian is similar to the scalar Laplacian; whereas the scalar Laplacian applies to a scalar field and returns a scalar quantity, the vector Laplacian applies to a vector field , returning a vector quantity.
Poisson's equation is =, where is the Laplace operator, and and are real or complex-valued functions on a manifold. Usually, f {\displaystyle f} is given, and φ {\displaystyle \varphi } is sought. When the manifold is Euclidean space , the Laplace operator is often denoted as ∇ 2 , and so Poisson's equation is frequently written as ∇ 2 φ ...
When the resulting form also has real coefficients, the operator is said to be a real operator. This can be further characterised in two ways: If the complex conjugate of the operator is itself, or if the operator commutes with the almost-complex structure acting on complex differential forms. The composition of two real operators is real.
Conversely, characterizes the Laplace–Beltrami operator completely, in the sense that it is the only operator with this property. As a consequence, the Laplace–Beltrami operator is negative and formally self-adjoint, meaning that for compactly supported functions f {\displaystyle f} and h {\displaystyle h} ,
The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).
The continuous -Laplace operator is a second-order differential operator that can be well-translated to finite weighted graphs. It allows the translation of various partial differential equations, e.g., the heat equation, to the graph setting.
It can be obtained by letting the Laplace operator work on the indicator function of some domain D. The Laplacian of the indicator can be thought of as having infinitely positive and negative values when evaluated very near the boundary of the domain D. From a mathematical viewpoint, it is not strictly a function but a generalized function or ...