Search results
Results from the WOW.Com Content Network
Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). [2] This motion pattern typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume.
Stokes' law is important for understanding the swimming of microorganisms and sperm; also, the sedimentation of small particles and organisms in water, under the force of gravity. [ 5 ] In air, the same theory can be used to explain why small water droplets (or ice crystals) can remain suspended in air (as clouds) until they grow to a critical ...
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
The equation above presupposes that the gas density is low (i.e. the pressure is low). This implies that the transport of momentum through the gas due to the translational motion of molecules is much larger than the transport due to momentum being transferred between molecules during collisions.
In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as a mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force, and 10 29 times weaker than the weak interaction.
However, due to buoyancy, the balloon is pushed "out of the way" by the air and will drift in the same direction as the car's acceleration. When an object is immersed in a liquid, the liquid exerts an upward force, which is known as the buoyant force, that is proportional to the weight of the displaced liquid.
By the equipartition theorem, internal energy per mole of gas equals c v T, where T is absolute temperature and the specific heat at constant volume is c v = (f)(R/2). R = 8.314 J/(K mol) is the universal gas constant, and "f" is the number of thermodynamic (quadratic) degrees of freedom, counting the number of ways in which energy can occur.
where ρ is the density of the fluid, g is the acceleration due to gravity, and V is the volume of fluid directly above the curved surface. [8] In the case of a ship, for instance, its weight is balanced by pressure forces from the surrounding water, allowing it to float. If more cargo is loaded onto the ship, it would sink more into the water ...