Search results
Results from the WOW.Com Content Network
This monoid is denoted Σ ∗ and is called the free monoid over Σ. It is not commutative if Σ has at least two elements. Given any monoid M, the opposite monoid M op has the same carrier set and identity element as M, and its operation is defined by x • op y = y • x. Any commutative monoid is the opposite monoid of itself.
The monoid is then presented as the quotient of the free monoid (or the free semigroup) by these relations. This is an analogue of a group presentation in group theory. As a mathematical structure, a monoid presentation is identical to a string rewriting system (also known as a semi-Thue system). Every monoid may be presented by a semi-Thue ...
A free monoid is equidivisible: if the equation mn = pq holds, then there exists an s such that either m = ps, sn = q (example see image) or ms = p, n = sq. [9] This result is also known as Levi's lemma. [10] A monoid is free if and only if it is graded (in the strong sense that only the identity has gradation 0) and equidivisible. [9]
A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale. A monoid object in (Ab, ⊗ Z, Z), the category of abelian groups, is a ring. For a commutative ring R, a monoid object in (R-Mod, ⊗ R, R), the category of modules over R, is a R-algebra.
Conversely, the set of isomorphism classes (if such a thing makes sense) of a monoidal category is a monoid w.r.t. the tensor product. Any commutative monoid (,,) can be realized as a monoidal category with a single object. Recall that a category with a single object is the same thing as an ordinary monoid.
Let denote the free monoid on a set of generators , that is, the set of all strings written in the alphabet .The asterisk is a standard notation for the Kleene star.An independency relation on the alphabet then induces a symmetric binary relation on the set of strings : two strings , are related, , if and only if there exist ,, and a pair (,) such that = and =.
The syntactic monoid is the group of order 2 on {,}. [9] For the language (+), the minimal automaton has 4 states and the syntactic monoid has 15 elements. [10] The bicyclic monoid is the syntactic monoid of the Dyck language (the language of balanced sets of parentheses).
The non-negative integers form a cancellative monoid under addition. Each of these is an example of a cancellative magma that is not a quasigroup. Any free semigroup or monoid obeys the cancellative law, and in general, any semigroup or monoid that embeds into a group (as the above examples clearly do) will obey the cancellative law.