Search results
Results from the WOW.Com Content Network
The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [11] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);
In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.
Bentley's paradox (named after Richard Bentley) is a cosmological paradox pointing to a problem occurring when Newton's theory of gravitation is applied to cosmology. Namely, if all the stars are drawn to each other by gravitation, they should collapse into a single point.
Some then-accepted physical theories were inconsistent with that framework; a key example was Newton's theory of gravity, which describes the mutual attraction experienced by bodies due to their mass. Several physicists, including Einstein, searched for a theory that would reconcile Newton's law of gravity and special relativity.
In gravitation, Chasles' theorem says that the Newtonian gravitational attraction of a spherical shell, outside of that shell, is equivalent mathematically to the attraction of a point mass. [1] The theorem is conventionally known as Newton's shell theorem, but is attributed to Michel Chasles (1793–1880) by Benjamin Peirce.
A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T 2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2). In its original concept, gravity was a force between ...
In theoretical physics, geometrodynamics is an attempt to describe spacetime and associated phenomena completely in terms of geometry.Technically, its goal is to unify the fundamental forces and reformulate general relativity as a configuration space of three-metrics, modulo three-dimensional diffeomorphisms.
For example, consider a book at rest on a table. The Earth's gravity pulls down upon the book. The "reaction" to that "action" is not the support force from the table holding up the book, but the gravitational pull of the book acting on the Earth. [note 6] Newton's third law relates to a more fundamental principle, the conservation of momentum.