Search results
Results from the WOW.Com Content Network
In mammals, the auditory hair cells are located within the spiral organ of Corti on the thin basilar membrane in the cochlea of the inner ear. They derive their name from the tufts of stereocilia called hair bundles that protrude from the apical surface of the cell into the fluid-filled cochlear duct .
In the inner ear, stereocilia are the mechanosensing organelles of hair cells, which respond to fluid motion in numerous types of animals for various functions, including hearing and balance. They are about 10–50 micrometers in length and share some similar features of microvilli . [ 1 ]
The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2] Strategically positioned on the basilar membrane of the organ of Corti are three rows of outer hair cells (OHCs) and one row of inner hair cells ...
The basilar membrane is a pseudo-resonant structure [1] that, like the strings on an instrument, varies in width and stiffness. But unlike the parallel strings of a guitar, the basilar membrane is not a discrete set of resonant structures, but a single structure with varying width, stiffness, mass, damping, and duct dimensions along its length.
The hair cells are the primary auditory receptor cells and they are also known as auditory sensory cells, acoustic hair cells, auditory cells or cells of Corti. The organ of Corti is lined with a single row of inner hair cells and three rows of outer hair cells. The hair cells have a hair bundle at the apical surface of the cell.
This movement is conveyed to the organ of Corti inside the cochlear duct, composed of hair cells attached to the basilar membrane and their stereocilia embedded in the tectorial membrane. The movement of the basilar membrane compared to the tectorial membrane causes the stereocilia to bend.
The receptor cells located in the semicircular ducts are innervated by the eighth cranial nerve, the vestibulocochlear nerve (specifically the vestibular portion). The crista ampullaris itself is a cone-shaped structure, covered in receptor cells called "hair cells". Covering the crista ampullaris is a gelatinous mass called the cupula. Upon ...
The basilar membrane is labeled "basilar fiber." The basilar membrane and the hair cells of the cochlea function as a sharply tuned frequency analyzer. [3] Sound is transmitted to the inner ear via vibration of the tympanic membrane, leading to movement of the middle ear bones (malleus, incus, and stapes).