Search results
Results from the WOW.Com Content Network
Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last common ancestor of those groups. The cladistic term for the same phenomenon is homoplasy.
Convergent evolution—the repeated evolution of similar traits in multiple lineages which all ancestrally lack the trait—is rife in nature, as illustrated by the examples below. The ultimate cause of convergence is usually a similar evolutionary biome , as similar environments will select for similar traits in any species occupying the same ...
Carcinisation (American English: carcinization) is a form of convergent evolution in which non-crab crustaceans evolve a crab-like body plan. The term was introduced into evolutionary biology by Lancelot Alexander Borradaile, who described it as "the many attempts of Nature to evolve a crab". [2]
Evolution is the change in the heritable characteristics of biological populations over successive generations. [1] [2] It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, resulting in certain characteristics becoming more or less common within a population over successive generations. [3]
Conversely, Dawkins and Simon Conway Morris think that the course of evolutionary history is more predictable than does Gould. They argue that "convergent evolution is such a ubiquitous feature of evolution that the broad outline of evolution is highly predictable. Evolutionary pathways are constrained by both opportunity and possibility.
However, the criteria for defining convergent as opposed to parallel evolution are unclear in practice, so that arbitrary diagnosis is common. When two species share a trait, evolution is defined as parallel if the ancestors are known to have shared that similarity; if not, it is defined as convergent.
The outcome of evolution is not a perfectly designed organism. The end products of natural selection are organisms that are adapted to their present environments. Natural selection does not involve progress towards an ultimate goal. Evolution does not strive for more advanced, more intelligent, or more sophisticated life forms. [25]
Sexually reproducing animals, plants, fungi and protists are thought to have evolved from a common ancestor that was a single-celled eukaryotic species. [1] [2] [3] Sexual reproduction is widespread in eukaryotes, though a few eukaryotic species have secondarily lost the ability to reproduce sexually, such as Bdelloidea, and some plants and animals routinely reproduce asexually (by apomixis ...