enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    This does not compute the nth decimal digit of π (i.e., in base 10). [3] But another formula discovered by Plouffe in 2022 allows extracting the nth digit of π in decimal. [4] BBP and BBP-inspired algorithms have been used in projects such as PiHex [5] for calculating many digits of π using distributed computing. The existence of this ...

  3. Chronology of computation of π - Wikipedia

    en.wikipedia.org/wiki/Chronology_of_computation...

    Finds a formula that allows the nth hexadecimal digit of pi to be calculated without calculating the preceding digits. 28 August 1995 Yasumasa Kanada and Daisuke Takahashi: HITAC S-3800/480 (dual CPU) [36] [37] 56.74 hours? 4,294,960,000: 11 October 1995 Yasumasa Kanada and Daisuke Takahashi: HITAC S-3800/480 (dual CPU) [38] [37] 116.63 hours ...

  4. Category:Pi algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Pi_algorithms

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  5. Spigot algorithm - Wikipedia

    en.wikipedia.org/wiki/Spigot_algorithm

    A variant of the spigot approach uses an algorithm which can be used to compute a single arbitrary digit of the transcendental without computing the preceding digits: an example is the Bailey–Borwein–Plouffe formula, a digit extraction algorithm for π which produces base 16 digits. The inevitable truncation of the underlying infinite ...

  6. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    In other words, the n th digit of this number is 1 only if n is one of the numbers 1! = 1, 2! = 2, 3! = 6, 4! = 24, etc. Liouville showed that this number belongs to a class of transcendental numbers that can be more closely approximated by rational numbers than can any irrational algebraic number, and this class of numbers is called the ...

  7. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    Super PI by Kanada Laboratory [101] in the University of Tokyo is the program for Microsoft Windows for runs from 16,000 to 33,550,000 digits. It can compute one million digits in 40 minutes, two million digits in 90 minutes and four million digits in 220 minutes on a Pentium 90 MHz. Super PI version 1.9 is available from Super PI 1.9 page.

  8. Comparison of code generation tools - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_code...

    Umple code embedding one or more of Java, Python, C++, PHP or Ruby Pure Umple code describing associations, patterns, state machines, etc. Java, Python, C++, PHP, Ruby, ECcore, Umlet, Yuml, Textuml, JSON, Papyrus XMI, USE, NuXMV, Alloy Velocity apache: Java Passive [2] Tier Templates Java driver code Any text Yii2 Gii: PHP Active Tier

  9. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Gauss–Legendre algorithm: computes the digits of pi; Chudnovsky algorithm: a fast method for calculating the digits of π; Bailey–Borwein–Plouffe formula: (BBP formula) a spigot algorithm for the computation of the nth binary digit of π; Division algorithms: for computing quotient and/or remainder of two numbers Long division; Restoring ...