Search results
Results from the WOW.Com Content Network
The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.
The Hardy Cross method assumes that the flow going in and out of the system is known and that the pipe length, diameter, roughness and other key characteristics are also known or can be assumed. [1] The method also assumes that the relation between flow rate and head loss is known, but the method does not require any particular relation to be used.
In fluid dynamics, head is a concept that relates the energy in an incompressible fluid to the height of an equivalent static column of that fluid. From Bernoulli's principle, the total energy at a given point in a fluid is the kinetic energy associated with the speed of flow of the fluid, plus energy from static pressure in the fluid, plus energy from the height of the fluid relative to an ...
Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the network, taking into account the pipe specifications (lengths and diameters), pipe friction properties and known flow rates or head losses. The steady-state flows on the network must satisfy two conditions:
The following table gives flow rate Q such that friction loss per unit length Δp / L (SI kg / m 2 / s 2) is 0.082, 0.245, and 0.816, respectively, for a variety of nominal duct sizes. The three values chosen for friction loss correspond to, in US units inch water column per 100 feet, 0.01, .03, and 0.1.
Allen Hazen (August 28, 1869 – July 26, 1930) was an American civil engineer and an expert in hydraulics, flood control, water purification and sewage treatment.His career extended from 1888 to 1930, and he is, perhaps, best known for his contributions to hydraulics with the Hazen-Williams equation.
This page was last edited on 12 March 2009, at 11:41 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
The probable intensity and extent of a fire inside the building are indicated by factors including the building use, the building height, the items contained inside the building and their arrangement. These variables are compared to tables and values expressed in the model codes. The values in these tables are based on fire tests and loss history.